

General Chemistry Laboratory

Buffer Solutions

1

Last revised: 2024/10/26

Preparation

Collect the following items

- One 250 mL volumetric flask
- Two 10 mL graduated pipets and one pipet filler
- Four 50 mL beakers

Two plastic drop pipets

□ The TA will distribute one stir bar to each group

From your personal equipment

- Two test tubes (clean and dry), one 400 mL beaker
- 10 mL and 50 mL graduated cylinders
- One wash bottle and one 1 L plastic beaker

Objective and Principles

• Objective:

- Prepare HOAc/NaOAc buffer solutions
- Investigate the factors affecting buffer capacity: concentration and [A⁻]/[HA] ratio

Lab techniques:

- Operate a pH meter
- Volumetric flask
- Graduated pipet

Buffer Solution

- Function: Resisting pH change upon the addition of either acid or base
- Composition:
 - A mixture of weak acid + its conjugate base (e.g. HF/NaF)
 - \circ A mixture of weak base + its conjugate acid (e.g. NH₃/NH₄Cl)
- Acid-base equilibrium:

$$HA(aq) \rightleftharpoons H^+(aq) + A^-(aq)$$

Neutralize the added base

Neutralize the added acid

$$K_{\rm a} = \frac{[\rm H^+][\rm A^-]}{[\rm HA]}$$

• Henderson-Hasselbalch equation:

$$[H^+] = \frac{K_a[HA]}{[A^-]} \longrightarrow pH = -\log[H^+] = -\log K_a - \log(\frac{[HA]}{[A^-]})$$
$$pH = pK_a + \log \frac{[A^-]}{[HA]}$$

- Definition: The amount of OH⁻ or H⁺ (in moles) required to change the pH of buffer solution by 1 unit
- A buffer solution would have a higher buffer capacity when:
 - The total concentration of two components ([HA] + [A⁻]) is higher
 - \circ The concentration ratio [A⁻]/[HA] is closer to 1
- The most effective buffer range: $pK_a \pm 1$

$$\int_{C} When [A^{-}] = 10 \text{ x [HA], pH} = pK_a + 1$$

When [A⁻] = [HA]/10, pH = pK_a - 1

A pH meter consists of three parts:

> pH electrode assembly

- Reference electrode (often Ag/AgCI) potential is fixed
- Indicator electrode (glass frit) potential varies with [H⁺]
- > Voltmeter: measure the potential difference (E_m) between the two electrodes

> Thermoprobe: measure the temperature of solution

Working Principles of pH Meter

- *E*_m: measured cell potential
- K: constant, determined by the type of electrode used
- R: gas constant
- T: absolute temperature of the solution
- pH: pH value of solution
- *n*: number of moles of electrons transferred in the reaction
- F: Faraday constant
- The pH meter needs to be calibrated in standard solutions (pH 7.00 and pH 4.00)
- After calibration, the measured *E*_m can be converted to pH

Experiment Tasks

1. Calibrate pH-meter

2. Prepare HOAc and NaOAc solution

3. Measure the volume of one drop of HCI/NaOH

4. Prepare buffer solutions and record their pH values

Step 1: Calibration of pH Meter

- Press the "POWER" button to turn on the pH meter. Let it warm up for at least 10 min
- Press the "HOLD" button to suspend pH reading
- Remove the electrode cap from by rotating it
- Use a wash bottle to rinse the electrode assembly, then wipe it dry gently with a tissue
 - ✓ Each pH electrode assembly costs NTD 3,000 → Be careful when operate it

Step 1: Calibration of pH Meter

- Press the "MODE" button several times until "Temp" appears on the screen. Check whether the temperature reading is close to RT
- Press the "MODE" button again to switch to "pH" function

- Immerse both thermoprobe and pH electrode into pH 7.00 buffer solution
- Adjust Calib knob until '7.00' is shown
- Rinse the thermoprobe and pH electrode with DI water
- Switch to pH 4.00 buffer solution
- Adjust Slope knob until '4.00' is shown

10

Step 2: Prepare HOAc & NaOAc Solutions

Odd Group #'s

Prepare 0.050 M HOAc

- Measure 0.74 mL of conc. (17 *M*) HOAc
- Transfer to a 250 mL volumetric flask that contains some DI water
- Dilute to 250 mL
- pH of solution should be ~3

Even Group #'s

Prepare 0.050 *M* NaOAc

- Measure **1.70 g** of NaOAc-3H₂O, dissolve them in ~ 100 mL DI water in a beaker
- Transfer to a 250 mL volumetric flask (rinse the beaker 2-3 times)
- Dilute to 250 mL
- pH of solution should be ~8
- ✓ Two groups share one set of HOAc & NaOAc solutions
- ✓ Transfer the prepared solution into 400 mL beakers (labelled properly)

Step 3: Measure Drop Volumes

- Measure 5 mL of 1.0 M HCl and 1.0 M NaOH separately into two dry test tubes
- Use a plastic drop pipet to add 30~50 drops of 1.0 M HCl into a 10 mL graduated cylinder; record the volume of solution
- Use another clean plastic drop pipet to add 30~50 drops of 1.0 M NaOH into a 10 mL graduated cylinder; record the volume of solution

- Use 10 mL graduate pipets to measure volume accurately for HOAc and NaOAc solutions
- Make <u>two copies</u> of each test solution in 50 mL beakers (for adding acid and base, respectively)
- Perform the measurements in the sequence of (a), (b), (c), (d), then (e)

Test	0.050 <i>M</i>	0.050 <i>M</i>	DI
solution	HOAc (mL)	NaOAc (mL)	water (mL)
(a)	15	15	0
(b)	5	5	20
(c)	30	0	0
(d)	0	30	0
(e)	0	0	30

- ele Adj pH Stir bar not
- 50 mL beaker

Salt

bridge

- Both the thermoprobe and the pH electrode should be fixed on the holder and immersed in the test solution (the salt bridge of pH electrode should be fully immersed)
- Adjust the position of beaker and the pH electrode so that the stir bar does not collide with the electrode assembly
- Use plastic drop pipets to add HCl or NaOH into the test solution, record the solution pH dropwise
- When changing between solutions: press the "HOLD" botton on the pH meter, rinse both the electrode and the thermoprobe with DI water, then wipe dry with a tissue paper

Clean-Up and Check-Out

- Immerse the pH electrode in DI water (use a 100 mL beaker)
- Switch off the pH meter (keep the power cord plugged in)
- Salt solutions resulted from acid-base neutralization can be disposed into the sink
- Return the magnetic stir bar to TA
- Clean up the lab bench and check personal equipment inventory (have an associate TA sign the check list)
- This is a **Full Report** experiment:
 - Member A: Have the lab notes and results checked by the TA, and hand in the report next week.
 - Member B: Hand in prelab to the TA
- Groups on duty shall stay and help clean up the lab

Example of Data Table

Table 1	No of	С	d	С	d	е
Add NaOH(aq)	drop	0.050 M HOAc/NaOAc	0.017 M HOAc/NaOAc	0.050 <i>M</i> HOAc	0.050 <i>M</i> NaOAc	DI water
	5	4.80	5.09	3.65	11.51	11.49
	4	4.76	4.99	3.59	11.39	11.40
	3	4.73	4.89	3.48	11.22	11.27
	2	4.70	4.80	3.33	10.93	11.09
	1	4.67	4.73	3.15	10.78	10.79
Avg. pH of acid and base	0	4.65	4.64	3.00	7.71	5.49
	-1	4.61	4.56	2.82	6.37	3.01
Add HCI(aq)	-2	4.58	4.46	2.71	6.07	2.71
	-3	4.55	4.36	2.59	5.85	2.55
	-4	4.51	4.26	2.47	5.72	2.43
l	-5	4.47	4.15	2.39	5.60	2.35

Plot pH vs. # Drops of Acid/Base

- Use 'x-y scattering plot' function in MS Excel (or similar software); use lines to connect adjacent data points
- Plot all five dataset in a same figure (with appropriate <u>axis labels</u> and <u>legends</u>)
- The data table and figure should be included in the full lab report

Calculating Buffer Capacity

- For solutions (a) and (b), use the central 5 points in the dataset (see example Table 2)
- Use linear regression analysis to obtain the slope and R² value
- The data table and figure should be included in the full lab report

Calculating Buffer Capacity

21

T12.2 – Measuring (Graduated) Pipet

Deliver 5 mL solution – Method 1

- Clean a 10 mL pipet and rinse it twice with small amount of the liquid to be transferred
- Press valve A of the pipet filler and simultaneously squeeze the bulb to expel air from it, then insert the top of pipet gently into the pipet filler
- Bring the pipet tip below the liquid surface, press valve S to draw liquid to the 0.00 mL marking
- Wipe off any excess liquid near the pipet tip
- Use the other hand to hold the new container. Maintain the pipet in a vertical position and let its tip touch the inner wall of the container. Press valve E to drain the liquid to the 5.00 mL marking
- Do not force out any liquid remaining at the tip
- Wash the pipet thoroughly after use

22

T12.3 – Measuring (Graduated) Pipet

Deliver 5 mL solution – Method 2

- Clean a 10 mL pipet and rinse it twice with small amount of the liquid to be transferred
- Press valve A of the pipet filler and simultaneously squeeze the bulb to expel air from it, then insert the top of pipet <u>gently</u> into the pipet filler
- Bring the pipet tip below the liquid surface, press valve
 S to draw liquid until it rises above the 5.00 mL marking
- Remove the pipet filler and quicky use an index finger to close the top of pipet. Use the finger to adjust the liquid level to the 5.00 mL marking
- Wipe off any excess liquid near the pipet tip
- Use the other hand to hold the new container. Maintain the pipet in a vertical position and let its tip touch the inner wall of the container. Release the index finger so that liquid is transferred
- Do not force out any liquid remaining at the tip
- Wash the pipet thoroughly after use

T13 – Volumetric Flask

- Clean the volumetric flask thoroughly, then rinse it with a small amount of solvent
- Using a funnel, transfer the solution to be diluted into the volumetric flask
- Fill solvent into the flask until about half full, swirl the flask to let the solution mix
- Add more solvent so that the liquid level approaches (but does not exceed) the inscribed mark
- Use a dropper pipet to add solvent slowly, so that the liquid level matches the inscribed mark
- Install the stopper cap (hold with a finger), invert the flask several times to ensure thorough mixing
- Pour the solution into a beaker for later use (do not store solution in the flask)
- Wash the volumetric flask immediately after use and let it air dry (do not put flask on a hot plate or in an oven)

T16.1 – pH Meter

Preparation and calibraion:

- Press the "POWER" button to turn on the pH meter.
 Let it warm up for at least 10 min
- Press the "MODE" button several times until "Temp" appears on the screen. Check whether the temperature reading is close to RT
- Press the "MODE" button again to switch to "pH" function
- Press the "HOLD" button to suspend pH reading
- <u>Rotate</u> the electrode cap (3 M KCl) to remove it
- Use a wash bottle with DI water to rinse the electrode, then gently dry it with a tissue paper
- Immerse both the electrode and the thermoprobe into the pH 7.00 buffer solution
- Press "HOLD" again to unfreeze the reading. Adjust the "Calib" knob until 7.00 is shown
- Press "HOLD" to suspend pH reading. Remove the electrode and the thermoprobe, rinse them with DI water then immerse them into the pH 4.00 buffer solution
- Press "HOLD" again to unfreeze the reading. Adjust the "Slope" knob until 4.00 is shown

T16.2 – pH Meter

Measuring pH:

- Use a beaker to hold the solution to be tested. Add a magnetic stir bar and place the beaker atop a stirrer
- When changing between solutions: press the "HOLD" botton on the pH meter, rinse both the electrode and the thermoprobe with DI water, then wipe dry with a tissue paper
- The salt bridge at the bottom of electrode should stay below the liquid level, however avoid hitting the electrode with stir bar
- Immerse the electrode in clean DI water when not in use
- For long-term storage, put the electrode back into the 3 M KCI solution in the electrode cap

Salt bridge

25